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Notation
c Modified boxcar function
f Frequency
f, Nyquist frequency
G Power spectral density
H Transfer function
h Sampling time interval
1 Number of adjacent frequencies used in frequency smoothing
N Number of discrete points used in each FFT computation
q Number of ensembles used in the averaging process
R Correlation function
of Scale factor
T Signal length
t Time
U Fourier transform of u
u Boxcar function
X, Y Fourier transforms of z and y
z, y Input signals

7 Coherence function
e Argument of cross power spectral density function
S Time lag

4 Phase of transfer function

I Mean square value

Superscripts

- Raw estimate
- Smoothed estimate

Modified function
Complex conjugate
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1 Introduction

The development of the Fast Fourier Transform algorithm has extended the procedures
available for the analysis of random data. These procedures can be carried out on-line
using a hardware based machine, or the data can be processed using computer software.

The Wavetek 804A machine is an example of a digital Fourier analysis system which
can process unsteady signals 'real time'. To provide post-test analysis facilities with
similar capabilities, a PC-based computer program has been developed. The computer
program SPEC which has been written in Fortran 77 uses a Fast Fourier Transform
routine as the basis for all subsequent calculations and can be linked to the public
domain program GNUPLOT for graphical output.

This report introduces the user to basic spectral analysis theory and highlights some
aspects of data sampling and interpretation that need to be considered when dealing
with discrete Fourier transforms. A more detailed description of spectral analysis is
given by Bendat and Piersol (Reference [1]). This text forms the basis for much of the
theory presented in this report.

An outline of the computer program SPEC is also given with descriptions of both
input and output.

2 The Fourier Integral and Discrete Fourier Transform

In this report, the equations used in the analysis program are presented. The basic
properties and classification of random data, its measurement and analysis are described
in Reference [1]. Consideration of the data characteristics should be made prior to the
selection of the analysis techniques.

In the analysis of transient data, the Fourier Integral is used to determine a frequency
spectrum from any arbitrary time dependent signal. The infinite range Fourier Integral
is given by (Ref. [1]):

X(f) = L z(t)e-j 2 1t  (1)

Realistically, the signal of interest is defined over a finite time interval [0, T]. The infinite
range integral can be used within this time frame but now becomes a function of the
signal length T, as well as the frequency f. X(f, T) is the finite Fourier transform of
X(t).

X(f,T) = fo Z(t)-j2w(dt (2)

The analogue signal z(t) can be sampled at N discrete time intervals. If we define the
sampling interval as h such that (N - 1)h = T and h is chosen to produce a sufficiently
high cutoff frequency, the above finite range integral can be expressed as a summation.
For arbitrary I,

N-1

X(f,T) = h E a. exp [-j2irfnh] (3)
I3=0
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If the frequency spectrum is to be defined at N discrete frequencies (Le. I = k/Nh),
then the Discrete Fourier Transform (DFT) is,

X(fk, T) = h r. - --

= hX, (4)

where
N-i

Xp S CXP [-N] (5)
n_0

The computation of the Fourier components Xk at the discrete frequency values is
usually carried out using Fast Fourier Transform (FFT) techniques which are discussed
in Section 3.

Upon calculation of the Fourier components, it is possible to return to the original
input signal Z, by performing an Inverse Discrete Fourier Transform (IDFT). The IDFT
equation is:

N-1 r. w jM= X x [+3j (6)

Because the equations for DFT's and IDFT's are very similar, any algorithm used to
compute a DFT can also be used to calculate its inverse by simply substituting the
discrete frequencies for the input signal, changing the sign of the complex argument
from negative to positive and finally dividing the results by N.

3 The Fast Fourier Transform

The Fast Fourier Transform (FFT) is an algorithm that enables the spectrum of an
unsteady signal to be calculated using significantly less computational effort than the
standard Fourier series procedure. The basis of the FFT is to split an N point transform
into two N/2 point transforms. The derivation of the FFT algorithm from the DFT
equation (5) is as follows:

, N- exp [_ .2zknl
n--O

f.4kn .x 2n1eP 2wk(2n + 1)f
:~ ~ expex (7.)b

912n XP [-l X2n+1 exp 3 J

n=O NN EO

This can be re-written as k k

x NA + BNW (8)

where

A 4wknl

n*-O
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As an example, consider a case where the input signal consists of eight discrete points.
The eight point transform is split into two four point transforms which are in turn split
into four two point transforms. The equation below shows this splitting process with
the selected data points identified beneath each individual summation

For N = 8 and r = {z. : o, ziz2, ..... x7},

Xk = A: + B*kWa
{o, Z2, 24s 26) {2, 3,2,371

= [4k + Bf.,k.] + [Ak + BkWklIWk
{3o, 341 {Z2, Z61 {3I,s1 {3,27)

= A + B Wk) + (Ak + BkW 2k)W-I

{0} {24} {fZ} {Z6}

+ [(Ak2 + Bk Wk) + (M~ + Bfr4) W'1Wk,
431) fX51 (X31 W71

The FFT process can also be depicted diagramatically as shown for the eight point
transform in Figure 1 (Ref. [2]). The order in which the raw data on the left appears,
is determined using a 'bit reversal' procedure. That is, the address of the n th point is
found by taking the mirror image of the binary form of n. For example, point 3 (011) of
the 8 point transform shown is relocated to position 6 (110). The dashed lines indicate
that the quantity be multiplied by a complex coefficient Wk whereas the dotted lines
indicate a multiplication by unity. The junction of two lines at the dots indicate that
the two quantities should be added.

When calculating the Fourier Transform of an N point signal using the DFT ap-
proach, it involves a total of N 2 multiplications each followed by addition. For all FFT
applications, N is selected to be a power of 2 (i.e. N = 2P where p is a positive integer),
and for this arrangement, the FFT algorithm reduces the number of computations to
N Io2 N (Ref. 12]). As p increases, the advantage of the FFT over the DFT becomes
apparent as indicated in Table 1.

Table 1: Computational requirements for Fourier Transfrm calculations

p 2 3 4 5 6 7 8 9 10
N 4 8 16 32 64 128 256 612 1024
N 2  16 64 256 1024 4096 16384 6536 262144 1048576

Nlo2 N 8 24 64 160 384 896 2048 4608 10240
N 2/Nlog2 N 2.0 2.7 4.0 6.4 10.7 18.3 32.0 56.9 102.4
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Figure 1: Illustration of the FFT process for an N =8 transform

4 Spectral Density

The Power Spectral Density (PSD) function can be defined as the rate of change of
the mean square value of a given signal with respect to frequency (Ref. (3]). The mean
square value *2. of an infinitely long signal z(t) is as follows:

im ! f s(t)dt (9)
T-oo.I

I practice, signal analysis is confined to a finite length time history z(t, T) where

x(t, T) = (t) 0O<t <T
-0 otherwise

Therefore, by defining x(t, T) between ±oo the mean square value can be re-written as

~2 lin, f 2(t, T)dt (0
-T-. T j.o

By maing use of Parseval's theorem, which states that if X(I) is the Fourier transform
of z(t) then000 J Z(t)2dt L X(f)12 df (1

and since X(f, T) is the Fourier transform of z(t, T), the mean square value can be
defined as a function of the frequency spectrum.

'1= lm f, JX(f, T)12 df
T-. TJ 00

= 2 Iim n JX(f, T)12 df (12)
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The PSD function G.(f) is the rate of change of 92 with respect to frequency, therefore

G.(f) = d = 2 [IXuT)12 (13)

As 'E' denotes the expected value in the above equation, an estimate of the power
spectral density function can be expressed as

0.(f) = 2 IX(f, T)12  (14)

with the tilde (-) indicating that the function is an estimate only. From equation (4)
it is apparent that at discrete frequencies, X(&, T) = hXk. The power spectral density
function is therefore related to the power spectrum, JXtI2 as follows.

.yk) = - IX,1I2 = 2 1X,,
2  

(15)

For a second signal y(t), another PSD estimate can be calculated using the above equa-
tions. To investigate the relationship between x(t) and y(t), there is a need to compute
the Cross Spectral Density (CSD) function. The definition of CSD is presented below
as a function of the Fourier components of each signal.

2h,(f)= [x'cf , T)Y-(f,, Tf]

- [X*Yk] (16)

Here, the asterisk (*) indicates the complex conjugate.

Discrete frequency spectra estimates are subject to two main errors. These are
discussed in Reference [3] and are summarised as follows.

1. Statistical error due to finite data length, which can be improved by averaging the
results over a number of samples.

2. Bias error due to the finite bandwidth filter used to separate the various frequency
components of a signal. Bias errors are large when the PSD changes value rapidly
as the frequency is varied.

5 Data Manipulation

5.1 Sampling Considerations

A finite length signal of duration T should be sampled at N equally spaced time intervals
h. The parameters N and h determine the range and resolution of the final frequency
spectrum.

5.1.1 Time Interval, h

The sampling interval h is selected in order to obtain the required frequency range. If
it is known that a signal contains no frequencies greater than a value fc, then the signal

t,5



can be completely described if it Is sampled at a rate greater than 2f. fc is known as
the Nyquist frequency and is equal to half of the sampling frequency. The frequency
spectrum as calculated by Fast Fourier Transform techniques, produces a mirror image
of itself about this point. /upf' e - 1 (7

f=C P 2 (17)2 2h

If the sampling rate is selected to be too low, superposition of the high and low frequency
components in the original data occurs. Figure 2 shows how a high frequency signal is
indistinguishable from a lower frequency if the sampling interval is too large. This is
called 'aliasing'.

tue frequency siased frequency

XWt

ti t 3 14 is t

Figure 2: The aliasing effect in the time domain

For any frequency f within the range 0 < f 5 fc, the higher frequencies which are
aliased to it are

(2f , ± ), (4/C ± f). (2nfc ± f).

Figure 3 illustrates the aliasing effect on the frequency spectrum. The components
that lie beyond the Nyquist frequency are folded back about this point to corrupt the
true frequency spectrum.

The aliasing phenomenon can be avoided by either

1. filtering the raw analogue signal before digitising to remove frequencies higher than
the chosen Nyquist frequency (i.e. low puss filtering),

2. Selecting h small enough to ensure that no frequencies with significant power occur
beyond the Nyquist frequency.
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Figure 3: The allasing effect in the frequency domain

5.1.2 Number of points, N

After h has been determined, N must be chosen such that Nh is not greater than the
available signal length T. N also controls the resolution of the output spectrum. The

number of discrete frequency points within the range (0, fc) is N/2 + 1. N must be
selected large enough to enable sudden changes (i.e. spikes) in the frequency spectrum

to be easily identified, and to avoid this information becoming lost or smeared into
neighbouring frequencies. The number of points must also be selected to maintain a
good compromise between required output resolution and computational effort.

5.2 Centring

Data that has a non-zero mean value will result in power at a frequency of 0 Hz. If this
is large then it may adversely affect the results at other frequencies. The time history

can be modified to centre the signal on a zero mean value to remove this effect.

1N-I
.ZnE n k (18)

5.3 Windowing

Because it is impractical to compute the Fourier transform of an infinitely long signal, it
is necessary to select a finite length signal from the available data. This is accomplished

by multiplying the infinite signal by a boxcar function, u(t) defined as follows.

u(t) =0 t < -T/2
=1 -T/2<t<T/2 (19)
=0 t>T/2

T



By multiplying the infinite signal by the boxcar function u(t) in the time domain, the
estimate of the power spectral density function 0,(f) has been affected by the transform
of the boxcar function U(f) in the frequency domain.

The Fourier transform of u(t) is

U(f) = ! fT (20)

and is called a window function (Reference. [1]).
The estimate 0.(f) is the convolution of the true G.(f) with the window function

U(f). The main lobe of the window function spreads the power at discrete frequencies
over the sample bandwidth and the smaller side lobes cause leakage to occur.

To reduce the effect of leakage, it is necessary to modify the weighting function in the
time domain such that in the frequency domain, the width of the main lobe is increased
and the magnitude of the side lobes is decreased.

One common technique for weighting the data is by using a cosine distributed taper
on the ends of the signal. This ensures that there are no discontinuities of amplitude
and/or slope between the start and finish of each sample period (Reference [3]). The
Fourier transform is based on the assumption that the data is periodic.

If the total number of digitised points in the signal sample is N and the number of
points to be tapered at each end is m, then the weighting function c, for n = 0 to N - i
is given by

n = (1- cos())) :cn = 1 : n N- 21Cos (E))
This function is known as the 'Tukey' window (Ref. [4]). When the number of points

at each end is equal to half of the total number of points, the Tukey window becomes
commonly known as the 'Hanning' window. Figure 4. illustrates the difference between
the Hanning window function and the boxcar window function in the frequency domain.

The inclusion of a taper function will reduce the variance of the tapered data with
respect to the original data. This in turn reduces the magnitude of the FFT and the
subsequent PSDs. A correction scale factor should be applied to the resulting PSD if a
taper function has been used in order to compensate for the reduced variance. Parseval's
theorem suggests that this factor can be determined by integrating the square of the
window function (i.e. eq.22) in the time domain.

a! = [~)2d

= 4/(4- 5N) (22)

Reference [3] indicates that for a full Haning window (i.e. m/N = 0.5), the above
scale factor should be 8/3 and for a rectangular window (i.e. rn/N = 0) this factor
should be 1.

8
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Figure 4: Comparison of Boxcar and Hanning window functions.

5.4 Smoothing of results

With real data, the spectral density estimates will contain both random and bias errors.
These are discussed in Reference [1]. To improve the accuracy of the estimates, it is
usual to average the results using one of the following techniques. The smoothed result
is indicated by the use of a hat (-) which replaces the tilde (-) used to indicate a raw
estimate.

The time history (if sampled for a long enough period) can be split up into q separate
segments. The power spectra for each of these segments should be calculated indepen-
dently and the average spectrum determined according to the following equation.

= + + .... + d k = 0, 1, 2,...N/2 - 1 (23)

As the number of averages increases, the results assymptote to the true spectrum, but
there is a practical restriction on the number of averages that can be used due to the
total length of available data. In order to increase the number of averages, it is useful
to employ an 'overlapping' technique where the trailing portion of data in the current
segment can be used as the initial portion for the next segment. An overlap of more
than 50 % is deemed to be unnecessary, as each new data block then becomes too similar
to the last, and therefore continued averaging would yield no real benefit.

6 Auto-correlation Functions

The auto-correlation function describes the relationship between a signal value at a
particular time to that at a different time. For a sample time history z(t), an estimate
of the auto-correlation between signal values at times t and t + r can be made by taking
the product of the two signals and averaging over the time T. This process Is represented

i i i mnl in9



by the following equation.

R.(,r) = .lm I (t)x(t + 'r)dt (24)

R,('r) is always a real valued even function (symmetric about r- = 0) with a maximum
at 7- = 0, and may be either positive or negative or sero at all other values of 7.

Because the auto-correlation function can also be defined as the inverse Fourier
transform of the power spectrum, it can be efficiently obtained using FFT techniques.

_.(,(.) = -x1 0. (k) e +:-- (25)
k=o

7 Cross-correlation Functions

In a similar manner to the auto-correlation function, the cross-correlation function de-
scribes the relationship in the time domain between two different signals. For a pair of
signals z(t) and y(t), the cross-correlation function is defined as:

( ) = Un - j z(t)y(t + 7)dt (26)

R.,(7') is a real function that can be positive or negative or zero but unlike auto-
correlation functions, it does not necessarily have a maximum at r = 0 nor does it have
to be an even function.

Again by using FFT procedures, the 4cross-correlation function can be calculated as
the inverse Fourier transform of the cross-spectrum.

(.) = I N (f,) ex [+--- (27)
k=o

Averaging of a number of ensembles is required to provide estimates with satisfactory
accuracy.

Cross-correlation plots can be used in the measurement of time delays. As the signal
output is displaced in time relative to the input, the cross-correlation plot will peak at
a time that is equal to the time difference. It should be noted that the two signals must
be digitised with exactly the same starting time. Any misalignment in the t = 0 point
will result in a phase angle error in the cross spectral density estimate, which will in
turn cause errors in the cross-correlation and in any other function that requires CSD
estimates such as coherence.

8 Coherence

When dealing with two signals z(t) and y(t), an indication of the relation between the
signals can be obtained using a coherence function -Y.,(j). This fu-nction varies between
0 and I over the specified frequency range. When 72 is equal to 1, the signals are
said to be fully coherent (i.e. there is a linear relationship between them), whereas If

10



-2, equals 0 the signals are incoherent or totally uncorrelated. The coherence function
relates the cross-spectrum to both of the power spectra.

G (((f)) = 0 .( k)((28)

It should be noted that the above equation uses the hat (-) notation indicating that
each of the spectra should be averaged estimates. The use of raw spectra results in a
coherence function that is everywhere equal to unity, since:

= IO,(,fk)I2  
- [X'Y]" ' (X* Y] (29)( .(fk)O,(fk) = [X X] 2 [y.Y]

Smoothing of frequency spectra is discussed in Section 5.4.

9 Transfer Functions

If we consider a system where a signal y(t) is a response to an input z(t), the relationship
between them is the frequency response function H(f). For a single-input, single-output

system, H(f) (a complex function of frequency which contains both gain and phase
information) can be best calculated using the averaged cross power spectrum and the
input power spectrum.

= (f) (30)

The frequency response function gain is the the modulus from the above equation.

If0f I= ( 31
0(31

and the phase angle is the argument of 019.

(f)= ag (ka,(f)) = &:pf) (32)

10 Program SPEC

SPEC (truncated from Spectral Analysis) is written in standard Fortran 77 except for a
one line system call to run the graphics routine GNUPLOT. If this routine is unavailable
or unsultable for the computer in use, then the line should be commented out and the
program recompiled.

The subroutines used by SPEC are located in a library file called SPECLIB which
must be linked to SPEC after compilation. The library includes a routine to remove
the mean value from a signal (see Section 5.2) and also a routine to apply a cosine
windowing function to the raw data (see Section 5.3). The most important routine

within this library is the FFT routine itself which was obtained from Reference (5].

11



10.1 Input File SPEC.IN

SPEC requires the creation of an input file. This file contains all of the parameters
required to set up the calculation and is a simple 10 record file with only one number
on each record. A sample of such an input file is given below. The comments within
the file are quite acceptable as SPEC will only read the first number on each line.

I c* GNUPLOT plottn to be used ( 1 yes, 0 no)
1 e* Channel number
3 c* Channel number ( 0 it only one channel used)
2000.0 cc Sampling rate (Hz)
200.0 cc Maximum output frequency
30 cc No. of averages
10 Exponent for no. of samples/average (2-nl)
50 so Percentage of points in window clip
s0 c Percentage overlap
0.09844 c Engineering calibration for channel 1
2.32515 ce Engineering calibration for channel 3

The purpose of each record is as follows.

1. Record number 1 is a switch to turn the optional GNUPLOT plotting routine on
or off.

2. Record numbers 2 and 3 select the data files to be used in the analysis. Here,
channels 1 and 3 have been chosen to represent signals a and y respectively and
these data files must be called CHANO1.DAT and CHANO3.DAT. If record number
2 is a sero then the analysis will be for a single channel only and no cross signal
calculations will be attempted.

3. Record number 4 is the rate at which the data under consideration was digitised
from the analogue signal.

4. Record number 5 is the maximum output frequency required for the calculation
which cannot be greater than the maximum Nyquist cutoff frequency (half of the
sampling rate). If it is less than this value then the effective sampling rate will be
reduced by reading less frequently than the sampling rate to satisfy the relation
given in Section 5.1.1.

5. Record number 6 is the number of segments required to be averaged. The pro-
gram will adjust this record to the maximum possible if there is not enough data
available.

6. Record number 7 is the base 2 logarithm of the number of points required for one
segment. For the above example, the number of points Is 210 = 1024.

7. Record number 8 is the percentage of the total number of points required at each
end of the data segment for the cosine window clip. For the above example, the
number of points is 0.5 x 210 = 512.

12



8. Record number 9 is the percentage overlap of raw data from one segment to the
next.

9. Records 10 and 11 are any calibration constants that need to be applied to the raw
signal. If the raw signals are in volts and they need to be converted to engineering
units, then these constants should be specified in units/volt.

10.2 Analysis Format

Assuring that the input file SPECIN is available and is in the correct form, the spectral
analysis program will read all parameters within the file to initialise the calculation. A
check will first be made on the accessibility of the requested data files and warning flags
will be output to the screen if these files cannot be opened. If the input information is

correct, a summary of the set-up parameters is provided. This allows the user to double
check that the analysis has been specified correctly.

The calculation proceeds with the reading of the first segment of data from either one
or two data files. The data segment is passed to a centering subroutine (see Section 5.2)
and then the cosine windowing function is applied (Section 5.3). The data is adjusted
according to the calibration constant and finally the resulting real number is converted
to a complex number with the imaginary component equal to sero, as required by the

Fast Fourier Transform algorithm. The results from the FFT routine Xk, Yk are in the
form of complex numbers which are saved in an array while the next data segment is
read and processed in a similar manner. The following parameters are calculated and

summed over the total number of data segments.

Xk, Yk, IXkI, IYkI, IXkI 2, IYkI 2, XkYk, IXkYkI

These are used in the final calculation of PSD and coherence, etc. After the requested

number of averages is reached or the total available data has been read, the running
totals above are converted into averages by dividing by the number of segments used in
the calculation. A summary of the final calculation setup is then provided followed by
a table of output options.

10.3 Output

Selection of one of the analysis options, wln create a data file into which the results
are to be stored. The name of the data file is a combination of the type of analysis
requested (the first three characters in the file name) and also the channel numbers used
in the calculation. For example, a request for a PSD output on channel 1 would have
results stored in fie PSDO1.OUT. Similarly, a request for coherence between channels 1
and 3 creates a file COH0103.OUT. The ouput files possible will have names using the
following codes:

1. DAT - Raw data from the last segment analysed.

2. FFT - The average Fourier transform over the time history.

3. INV - The inverse Fourier transform of the average FFT.

13



4. PSD - The average Power Spectral Density. This option also calculates a variance
estimate by integrating the PSD function.

5. AUT - The auto-correlation function obtained from the inverse Fourier transform
of the average PSD.

6. CSD - The average Cross Spectral Density.

7. CCO - The cross-correlation function obtained from the inverse Fourier transform
of the average CSD (in complex form).

8. COH - The coherence function.

9. FRF - The magnitude of the frequency response function.

10. PHA - The phase angle of the frequency response function.

If the graphics routine GNUPLOT has been made available, the requested output will
automatically be plotted on the screen for instant appraisal. Further analysis can be
requested until the EXIT option is used. All data files created by SPEC are saved for
later use upon exit from the program.

An example of SPEC output is presented in Appendix A. This includes a comparison
with results calculated on a Wavetek 804A Fourier analyser.

11 Conclusion

The development of a PC based computer program (SPEC) provides a capability to
perform post test spectral analysis on digitised time-dependent signals.

The mathematical definitions have been included to ensure that the basis for the
calculations used in the computer program is clearly documented. For further informa-
tion regarding the application of the techniques, reference should be made to standard
texts such as Ref. [1]. Some general guidelines on the preparation of measured data are
included.
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Appendix A - Example SPEC Output

The output presented in this appendix has been calculated using signals from an ac-
celerometer and an unsteady pressure transducer obtained during testing in the ARL
9' x 7' Low Speed Wind Tunnel. Both transducers were mounted on the vertical stabiliser
ofa I/9th scale model aircraft which was subjected to aerodynamic buffet.

The analysis was completed under the following conditions:

1. The accelerometer and pressure transducer were on channels 1 and 2 respectively.

2. The sampling rate was 2000 Hz.

3. Maximum output frequency was set to 1000 Hs (of which 0 - 500 Hz has been
plotted in the following figures).

4. 30 block averages were used with each block containing 1024 points and overlapping
by 50 %.

5. The data was unfiltered at the time of recording and smoothed using a full BnnHng
window.

A typical block of data from these transducers is given in Figure Al.

Figure A2 shows the correlation functions as calculated by SPEC. It can be construed
from Parseval's theorem that the value of autocorrelation functions at - = 0 should be
equal to the variance of raw signal. Program SPEC provides the user with a variance
estimate by integrating the Power Spectral Density function. The two signals chosen
for this analysis produced variances of 1376g2 and 108000Pa2 which compare quite well
with Figure A2 at r = 0.

The Wavetek804A Fourier analyser is used as a basis for comparison with SPEC
output. As this machine does not have a built in facility for the calculation of correlation
functions, a direct comparison with a hardware based Fourier analyser could not be
made. However, for the parameters presented in the frequency domain, its output is
useful.

For the frequency based functions such as PSD, coherence etc., a direct comparison
between Wavetek and SPEC results is graphically presented in Figures A3-AT. This
indicates that the software-based method is correct in determining both the frequency
information within a random signal and the level of energy at each discrete frequency.
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FIGURE A2. Correlation functions calculated using program SPEC



200.0 WAVET"J

2

2 20.0 SPEC

g /H,

0.0
0 100 200 300 400 500

Frequency Hz

FIGURE A3. Power Spectral Density of Accelerometer Signal

8000.0 AEE
2

Pa /H z 0.

8000.0 SE
2

&A&0.0 
L- 

-0 100 200 300 40 500

Frequency Hz

FIGURE M4. Power Spectral Density of Pressure Transducer Signal

g 1000.0 WAVEMh

0.0

gPa /0H0

0.0 I

0 100 200 300 400 500

Frequency Hz

FIGURE A5. Cross Power Spectral Density of Abov'e Signals



1.0 M

0.0 A
1.0 SE

0.0 Ar % LA A- kA A, - -

0 100 200 300 400 500

Frequency Hz

FIGURE A6. Coherence Function

60.0 SE

0.0
0 100 200 300 400 500

Frequency Hz

FIGURE A7. Modulus of Transfer Function



DISTRIBUTION

AUSTRALIA

Department of Defence

Defence Central
Chief Defence Scientist
AS, Science Corporate Management (shared copy)
FAS Science Policy (shared copy)
Director, Departmental Publications
Counsellor, Defence Science, London (Doc Data Sheet Only)
Counsellor, Defence Science, Washington (Doc Data Sheet Only)
OIC TRS, Defence Central Library
Document Exchange Centre, DSTIC (8 copies)
Defence Intelligence Organisation
Librarian H Block, Victoria Barracks, Melbourne

Aeronautical Research Laboratory
Director
Library
Chief - Flight Mechanics and Propulsion Division
Head - Flight Mechanics Branch
Branch File - Flight Mechanics
Authors: L.D. MacLaren

S.D. Hill
C.A. Martin
P.A. Farrell
DJ. Sherman
N. Matheson
M.K. Glaister
CJ. Bulbeck

Materials Research Laboratoy
Director/Library

Defence Science & Technology Organisation - Salisbury
Library

NaM Office
Navy Scientific Adviser (3 copies Doc Data sheet only)

Scientific Adviser - Army (Doc Data sheet only)



Air Force Office
Air Force Scientific Adviser (Doc Data sheet only)

Statutory and State Authorities and Industry
Aero-Space Technologies Australia, Manager/Librarian (2 copies)
Hawker de Havilland Aust Pty Ltd, Victoria, Library
Hawker de Havilland Aust Pty Ltd, Bankstown, Library

Universities and Colleges

Melbourne
Engineering Library

Newcastle
Library
Professor R. Telfer, Institute of Aviation

Sydney
Engineering Library
D. Auld, Aeronautical Engineering

NSW
Library, Australian Defence Force Academy

RMIT
Library
M.L. Scott, Aerospace Engineering

SPARES (10 COPIES)

TOTAL (50 COPIES)



AL 149 DEPARTMENT OF DEFENCE PAGE CLASSIFICATION

DOCUMENT CONTROL DATA UNCLASSIFIED

PRIVACY MARKING

I. AR NUMBER Ib. ESTABLISHMENT NUMBER 2. DOCUMENT DATE 3. TASK NUMBER

AR-006-583 ARL-FLIGHT-MECH MARCH 1991 DST 90/061
TM-432

4. ITIE 5. SECURFTY CLASSIICATION S. NO. PAGES

A FORTRAN PROGRAM FOR SPECTRAL (PLACE APPROPRIATE cLAsSiFiCATnos

ANALYSIS USING THE FAST FOURIER IN BOX(S) IE. SECRET (S). CONF. (C) 22
TRANSFORM RESTRICTED (R). UNCLASSIFIED (U)).DDD 1, NO, REFS

DOCUMENT TI.E A.BSTRACT1 5

& AUTHOR(S) 9. DOWNGRADING/DELIMITING INSTRUCTIONS

L.D. MacLAREN Not applicable
S.D. HILL

10. CORPORATEALMtOR AND ADDRESS 11. OFFICE/POSTION RESPONSIBLE FOR
DSTO

AERONAUTICAL RESEARCH LABORATORY SPONSOR _ _ _ _ _

506 LORIMER STREET SECURTY_

FISHERMENS BEND VIC 3207
DOWNGRADING

CFPD
APPROVAL _ _ _ _

12 SECONDARY DISRI1BUTION (OF THIS DOCUMEN-0

Approved for public release

OVERSEAS ENOUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DSTIC. ADMINISTRATIVE SERVI('IS BRANCII.
DEPARTMENT OF DEFENCE. ANZAC PARK WEST OFFICES. ACT 2w]

13. THIS DOCUMENT MAY BE ANNOUNCED IN CATALOGUES AND AWARENESS SERVICES AVAILABLE TO ....

No limitations

13b. CTTATION FOR OTHER PURPOSES (IE CASUAL nfl
ANNOUNCEMENT) MAY BE 13 UNRES ICTED OR AS FOR I-.

14. DEST OR 15. ISCAT SUECTFast fourier transforms CATEG ORIES
Spectrum analysis
Discrete fourier transform 1205
Fortran
Fourier analysis

I&. ABS1rRACr

7The analysis of random data is frequently carried out 'on-line' using a hardware based Fourier analvser.
Capabilities similar to those provided in the 'on-line' analysers have been developed in a Fortran computer
program that can be used to analyse a digital time-dependent signal a, the post-test stage. An overview of
the calculation methods used within this software is also presented



PAGE CLASSI ICATION

UNCLASSIFIED

PRIVACY MARKING

THIS PAGE IS TO BE USED TG RECORD INFORMATION WHICH IS REQUIRED BY THE ESTABLISHMEMt FOR ITS OWN USE BUT WHICH WILL NOT BE

ADDED TO THE DISTIS DATA UNLESS SPECIFICALLY REQUSTED.

I& ABSTRACT (Cot.

17. IMPRINT

AERONAUTICAL RESEARCH LABORATORY, MELBOURNE

I& DOCUMENT SERIES AND NUMBER 19. COST CODE 20. TYPE OF REPORT AND PERIOD COVERED

FLIGHT MECHANICS 525 120
TECHNICAL MEMORANDUM 432

21. COMPUTER PROGRAMS USED

22. ESTABUSHMENT FILE REFtS)

23. ADDITIONAL INFORMATION (AS REQUIRED)


